40 research outputs found

    Bortezomib/docetaxel combination therapy in patients with anthracycline-pretreated advanced/metastatic breast cancer: a phase I/II dose-escalation study

    Get PDF
    The aim of this study was to determine the dose-limiting toxicities (DLTs) and maximum tolerated dose (MTD) of bortezomib plus docetaxel in patients with anthracycline-pretreated advanced/metastatic breast cancer. Forty-eight patients received up to eight 21-day cycles of docetaxel (60–100 mg m−2 on day 1) plus bortezomib (1.0–1.5 mg m−2 on days 1, 4, 8, and 11). Pharmacodynamic and pharmacokinetic analyses were performed in a subset of patients. Five patients experienced DLTs: grade 3 bone pain (n=1) and febrile neutropenia (n=4). The MTD was bortezomib 1.5 mg m−2 plus docetaxel 75 mg m−2. All 48 patients were assessable for safety and efficacy. The most common adverse events were diarrhoea, nausea, alopecia, asthenia, and vomiting. The most common grade 3/4 toxicities were neutropenia (44%), and febrile neutropenia and diarrhoea (each 19%). Overall patient response rate was 29%. Median time to progression was 5.4 months. In patients with confirmed response, median time to response was 1.3 months and median duration of response was 3.2 months. At the MTD, response rate was 38%. Pharmacokinetic characteristics of bortezomib/docetaxel were comparable with single-agent data. Addition of docetaxel appeared not to affect bortezomib inhibition of 20S proteasome activity. Mean alpha-1 acid glycoprotein concentrations increased from baseline at nearly all time points across different bortezomib dose levels. Bortezomib plus docetaxel is an active combination for anthracycline-pretreated advanced/metastatic breast cancer. The safety profile is manageable and consistent with the side effects of the individual agents

    Reduced expression of p27 is a novel mechanism of docetaxel resistance in breast cancer cells

    Get PDF
    INTRODUCTION: Docetaxel is one of the most effective chemotherapeutic agents in the treatment of breast cancer. Breast cancers can have an inherent or acquired resistance to docetaxel but the causes of this resistance remain unclear. However, apoptosis and cell cycle regulation are key mechanisms by which most chemotherapeutic agents exert their cytotoxic effects. METHODS: We created two docetaxel-resistant human breast cancer cell lines (MCF-7 and MDA-MB-231) and performed cDNA microarray analysis to identify candidate genes associated with docetaxel resistance. Gene expression changes were validated at the RNA and protein levels by reverse transcription PCR and western analysis, respectively. RESULTS: Gene expression cDNA microarray analysis demonstrated reduced p27 expression in docetaxel-resistant breast cancer cells. Although p27 mRNA expression was found to be reduced only in MCF-7 docetaxel-resistant sublines (2.47-fold), reduced expression of p27 protein was noted in both MCF-7 and MDA-MB-231 docetaxel-resistant breast cancer cells (2.83-fold and 3.80-fold, respectively). CONCLUSIONS: This study demonstrates that reduced expression of p27 is associated with acquired resistance to docetaxel in breast cancer cells. An understanding of the genes that are involved in resistance to chemotherapy may allow further development in modulating drug resistance, and may permit selection of those patients who are most likely to benefit from such therapies

    Loss of heterozygosity (LOH), malignancy grade and clonality in microdissected prostate cancer

    Get PDF
    The aim of the present study was to find out whether increasing malignancy of prostate carcinoma correlates with an overall increase of loss of heterozygosity (LOH), and whether LOH typing of microdissected tumour areas can help to distinguish between multifocal or clonal tumour development. In 47 carcinomas analysed at 25 chromosomal loci, the overall LOH rate was found to be significantly lower in grade 1 areas (2.2%) compared with grade 2 (9.4%) and grade 3 areas (8.3%, P = 0.007). A similar tendency was found for the mean fractional allele loss (FAL, 0.043 for grade 1, 0.2 for grade 2 and 0.23 for grade 3, P = 0.0004). Of 20 tumours (65%) with LOH in several microdissected areas, 13 had identical losses at 1–4 loci within two or three areas, suggesting clonal development of these areas. Markers near RB, DCC, BBC1, TP53 and at D13S325 (13q21–22) showed higher loss rates in grades 2 and 3 (between 25% and 44.4%) compared with grade 1 (0–6.6%). Tumour-suppressor genes (TSGs) near these loci might, thus, be important for tumour progression. TP53 mutations were detected in 27%, but BBC1 mutations in only 7%, of samples with LOH. Evaluation of all 25 loci in every tumour made evident that each prostate cancer has its own pattern of allelic losses. © 1999 Cancer Research Campaig

    Cancer Biomarker Discovery: The Entropic Hallmark

    Get PDF
    Background: It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings: Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance: We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases

    Molecular Targeting in Oncology

    No full text

    Anaerobic bacteria and intrahepatic stones: Detections of Clostridium sp. and Bacteroides fragilis

    No full text
    Objective: To detect anaerobic bacteria Clostridium sp. and Bacteroides fragilis in intrahepatic stones by molecular genetic method. Methods: DNA was extracted from 59 stone samples and subjected to polymerase chain reaction (PCR) amplification targeting the 16S rRNA gene of Clostridium sp. and the glutamine synthetase gene of Bacteroides fragilis. Single-strand conformational polymorphism (SSCP) analysis was performed to identify the Clostridium sp. Results: 16S rRNA gene sequences for Clostridium sp. were identified in 49 stones (83%, 49/59). The two most common groups were detected in 19 (41%) and 17 (37%) of the 46 samples using SSPC analysis, and 25/59 (42%) stones were tested positive for Bacteroides fragilis. Conclusions: Anaerobes such as Clostridium sp. and Bacteroides fragilis present in intrahepatic stones and may play a role in stone formation. PCR is a useful technique to detect fastidious pathogens, which are difficult to culture. SSCP of PCR products is a rapid method in differentiating bacterial species.link_to_subscribed_fulltex
    corecore